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Relaxation oscillations of the synchrotron motion caused by narrow-band impedances

C. Limborg and J. Sebek
Stanford Synchrotron Radiation Laboratory/Stanford Linear Accelerator Center, MS 99, P.O. Box 4349, Stanford, California 94

~Received 19 April 1999!

Although the linearized theory of small amplitude synchrotron oscillations and the instability thresholds
derived from it have long been understood, there is no satisfactory description of the large amplitude highly
nonlinear synchrotron motion of a bunched beam. With an appropriate tuning of the RF cavity impedance,
large amplitude, low frequency, self-sustained relaxation oscillations of this synchrotron motion are generated.
This paper presents detailed experimental data on such behavior, tracking code results that reproduce the
important characteristics, and a simple analytical model that explains the key features of the relaxation oscil-
lation: growth of the instability, saturation of the oscillation, breakup of the bunch, and subsequent damping of
the system back to the beginning of the next cycle of the relaxation oscillation.@S1063-651X~99!10110-7#

PACS number~s!: 29.27.Bd, 05.45.2a
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I. INTRODUCTION

To describe the complicated motion of a charged part
beam in a storage ring, one uses equations that can be t
formed, with the appropriate sets of variables, into those
perturbed harmonic oscillator. In the transverse planes,
transformation leads to a Hill equation@1# and the restoring
forces come from external magnetic fields. In the longitu
nal plane, the exact single particle equation is that of a
cular pendulum, with the RF electric field providing the r
storing force. For sufficiently small amplitudes of motio
the systems can be well described by the harmonic oscill
equation. We refer to this as the linear regime. Electron m
chines also have natural damping as a consequence of
nificant synchrotron radiation emission. In addition, partic
generate electromagnetic fields that act as a driving fo
perturbing the focusing and stability of the beam. Depend
on their characteristics, these perturbations can either pro
stability to the beam or drive it to instability. The linea
theory that explains the threshold of coupled bunch instab
ties has long been understood. Large forced oscillations h
been studied and described for both proton@2# and electron
@3# machines. It has also long been observed that espec
for synchrotron oscillations, i.e., those in the longitudin
plane, self-excited oscillations can become very nonlin
@4–6#. They can saturate at an amplitude large with resp
to the bunch size. The envelope of the synchrotron mo
can also undergo very low frequency, large amplitude os
lations. Such self-excited motion, which oscillates betwe
two different dynamic states, is referred to here as a re
ation oscillation. The relaxation frequency is orders of ma
nitude slower than the synchrotron frequency.

This paper presents experimental data taken from a
tailed study of such relaxation oscillations, computer sim
lations that give further insights into the details of the osc
lations, and an analytical model that describes the cy
behavior of this nonlinear system. The instability studied
that commonly known as the coupled bunch instability.
the SPEAR electron storage ring, such an instability can
produced from a multitraversal effect acting on a sin
bunch. Most of the data presented in this paper were
quired in this case.

The bunch has qualitatively different characteristics at
PRE 601063-651X/99/60~4!/4823~13!/$15.00
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different stages of its relaxation cycle. In the initial phase
low amplitude, the bunch behaves as a single macropar
that follows a harmonic oscillator equation. Its amplitude
oscillation grows toward an attractor at infinity. As the am
plitude increases, nonlinearities manifest themselves thro
the reduction of the self-driving term and in the loss
charge density. These nonlinearities can account for the s
ration of the amplitude, but a dynamic phase transition m
occur in order for the system to enter its damping pha
During that phase transition, a new center of attraction
pears. The single macroparticle model cannot explain
appearance, but a model including the flow of individu
particles leaving the macroparticle can. Escaping partic
lose synchronicity with the macroparticle and are theref
no longer driven by it. They then damp towards the orig
The rate of damping of the system is determined by the
at which the current flows away from the macroparticle.

The macroparticle oscillation amplitude decreases,
the second center now accumulates charge and star
grow. This second center now becomes the new macro
ticle and the cycle is repeated. Models that use symme
modes to describe this instability are inappropriate beca
of the observed asymmetry of the phase space distribut
This asymmetry starts with the growth as a macropart
and continues throughout the cycle. For certain conditions
this self-interaction, the second macroparticle is visible a
fixed point approximatelyp out of phase with the first mac
roparticle. These phase-locked particles are also not sym
ric.

II. EQUATION OF MOTION

A. Unperturbed oscillator

In electron storage rings, RF cavities are highQ resonant
structures that provide the electric field necessary to comp
sate for the energy lost by the electrons. The energy ga
by a particle in the RF cavity depends on its arrival time
the RF cavity. Its longitudinal phase space coordinates
~t,d!, wheret is the delay andd is the relative energy devia
tion of that particle with respect to the synchronous partic
The synchronous particle is the virtual particle that has
ergy E0 and enters the cavity att5nT0 , whereT0 is the
revolution period of the machine. This particle loses
4823 © 1999 The American Physical Society
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4824 PRE 60C. LIMBORG AND J. SEBEK
amount of energyU0 per turn, primarily from its emission o
synchrotron radiation. The synchronous particle exactly
covers that amount of energy from the electric field in the
cavity.

The evolution of the parameters~t,d! of a particle after
one revolution of the ring from turnn to turn n11 is given
by

tn115tn1aTob2dn , ~1!

dn115dn1
eVr f

Eo
sin~ws1v r f tn11!2

Uo

Eo
, ~2!

wherea is the momentum compaction of the ring,b is the
relativistic coefficient, very close to 1 for ultrarelativist
electrons,v r f is the RF angular frequency, andws the syn-
chronous phase defined byU05eVRF sinws.

The phase is referenced to the zero crossing of sinuso
voltage, and cosws,0. The variation over one turn can b
replaced by a time derivative.

ḋ5
Ddn

To
5

eVr f sin~ws1v r f t!2Uo

EoTo
, ~3!

ṫ5
Dtn

To
5ad.

The equation of motion of a single particle can then
written as a second order differential equation

ẗ5
a

EoTo
@eVr f sin~ws1v r f t!2Uo#. ~4!

For small amplitudes, this equation is that of a harmo
oscillator

ẗ52vso
2 t.

The natural synchrotron angular frequencyvso is then
defined by

vso
2 5vo

2 aeVr f hucoswsu
2pEo

.

In general, the motion is that of a circular pendulum. T
frequency of oscillation is reduced quadratically with amp
tude with respect to the natural synchrotron frequency. T
amplitude dependence is of major importance in the desc
tion of the relaxation mechanism.

Since the particle energy loss per turn is itself ene
dependent, the synchrotron motion is naturally damped.
equation of motion now has the form

ẗ5
a

EoTo
@eVr f sin~ws1v r f t!2Uo#22a radṫ, ~5!

with the radiation damping decrement

a rad5
1

2To

dUo

dE U
E5Eo

.
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B. Wake field

While passing through the RF cavity, the bunch can exc
a high order mode~HOM in accelerator physics jargon!. The
electromagnetic fields produced by a particle can give lon
tudinal kicks to subsequent particles or incoming bunch
accelerating or decelerating them, depending on the phas
the field.

The potential generated by a unit particle is commo
referred to as a wake potential, or wake field. Wake fie
from HOMs can be represented by the impulse response
comparable electrical circuit, consisting of a parallel com
nation of a resistor~R!, an inductor~L!, and a capacitor~C!,
known as an RLC circuit. The wake field generated at timt
and observed at timet, due to a HOM whose characteristic
areRs ,aR , f R , is given by@7#

W~ t2t!52aRRsU~ t2t!e2aR(t2t)H cos@v̄~ t2t!#

2
aR

v̄
sin@v̄~ t2t!#J , ~6!

with

U~ t !5H 1 t.0

1/2 t50

0 t,0

and

v̄5AvR
22aR

2.

Rs is the shunt resistance~10 MV in this study!, aR is the
damping rate of the HOM related to the quality factorQ by
aR5vR/2Q (Q is 20 000 in this study!, and f R is the reso-
nant frequency~358 MHz in this study!. The length of the
cavity is much smaller than the circumference of the ring a
can be assumed to be pointlike. The retarding voltageV(t)
induced by a bunch containingN particles of chargee is
NeW(t).

This term adds a perturbing driving force to the harmo
oscillator equation. Equation~5! becomes

ẗ12a radṫ2
a

EoTo
@eVr f sin~ws1v r f t!2Uo#

52
aNeW~t!

EoTo
. ~7!

III. EXPERIMENT RESULTS

A. Motivations

Small dimensions and stability of the bunch in time a
energy are essential for high performance of storage rin
for both collider rings and synchrotron radiation sourc
Particles are lost from the accelerator when the amplitude
their synchrotron oscillations exceed the acceptance of
machine.

The voltage induced by the beam on the cavity impe
ance, at the upper synchrotron sideband of the revolu
harmonics, has a destabilizing effect on the beam. This
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stability, commonly known as the coupled bunch instabili
occurs when this force exceeds the net damping force.

While characterizing the RF cavities in order to impro
the stability of SPEAR@8#, much of our attention was paid t
the growth of the HOM-induced instabilities. A regula
modulation about the saturation level was observed~Fig. 1!
@9#. Its period is always longer than a radiation dampi
time. This modulation is often small, but certain machi
parameters can make it very large, regular, and quite strik
~Fig. 2!. The possibility of adjusting the HOM frequency b
positioning a moveable RF cavity tuner in the passive
cavity made such observations very repeatable and co
nient to study on the SPEAR ring.

B. Time scales

The experimental parameters are presented in Table
2.3 GeV, the natural radiation damping time is 10 ms, but
total damping time was measured to be 5 ms~at 2 mA!. This
figure was used for the analysis. The resonance studied i
fundamental resonance,f HOM5 f RF . ~Improper tuning of the
fundamental resonance, as studied here, in a powered
cavity results in the instability known as the Robinson ins
bility @10#.! The large variety of time scales involved in th
relaxation mechanism is presented in Table II.

FIG. 1. Spectrum analyzer zero-span output for the cavity sig
at 751f 01 f s . The first 0.2 seconds of the scan show the amplitu
at the onset of an unstable synchrotron oscillation. The rest sh
the low frequency relaxation oscillation about the saturation lev

FIG. 2. Spectrum analyzer zero-span output for the cavity sig
at f HOM1 f s . Data such as these were fit, as a function off HOM ,
for frequency, maximum and minimum oscillation power, grow
times, and damping times.
,

g

F
e-

At
e

the

RF
-

The wide range of these time scales means that these
nomena occupy different ranges of the frequency spectr
Discrete series can be approximated by continuous integ
Synchrotron oscillations can be averaged to give simplifi
equations of motion for the relaxation oscillation.

C. Description of measurements

Since the amplitude of the driving force depends on
HOM strength, the largest RF cavity impedance was cho
for the study. SPEAR has two RF cavities, but needs o
one powered for normal operation. Therefore, the larg
available impedance is the fundamental mode of the idle
cavity. The HOM impedance produces a strong long-ran
wake field at currents for which the short-range effects of
total ring impedance can be neglected.

Liberty has been taken with the term HOM in this pap
In all storage rings, the fundamental cavity mode is tuned
be stable, and stability problems from narrow band imp
ances come only from true HOMs. But the physics of t
instability depends only on the characterisitcs of the reso
tor; it does not depend on whether the mode is the fun
mental or of higher order. In this paper, HOM will also ref
to the fundamental mode in the idle cavity.

The independent variables in the study are machine
rent, energy, and HOM center frequency. Of those three,
HOM center frequency has the most striking effect on
dynamics of the problem. This frequency can be accura
tuned by positioning a movable RF cavity tuner.

1. Spectrum analyzer

The first series of data were taken on an RF spectr
analyzer and downloaded via aGPIB program to a PC for
data analysis.~All software for data collection, analysis, an
simulation is a combination of codes written internally
SSRL in the C programming language andMATLAB © @11#.!
The signal came from a probe in the RF cavity. The sp
trum analyzer was used as a narrow-band receiver, in z
span mode, tuned on the upper synchrotron sideband o
fundamental RF harmonic. Its resolution bandwidth, 10 kH
allowed reasonable rejection of the RF harmonic while p
serving the ability to see fast dynamic changes in the am
tude of the sideband. In particular, the value of the synch
tron frequency varies by several kHz over a relaxation cyc

al
e
s

l.

al

TABLE I. Machine parameters.

Energy U0 VRF tdamp RS

2.3 GeV 193 keV 1.68 MV 5 ms 10 MV

TABLE II. System time scales.

Frequency Period Nturns

f sawtooth ,100 Hz .10 ms .12 800
f so 28.4 kHz 35ms 45
aR 56 kHz 17.8ms 23
f o 1.28 MHz 0.78ms 1
f RF5 f HOM 358.5 MHz 2.8ms 1/280
(1/st) 10 GHz 100 ps 1/7840
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4826 PRE 60C. LIMBORG AND J. SEBEK
The evolution of crucial parameters of the relaxation
cillation as a function of the resonator frequency is summ
rized in Fig. 3. From the amplitude information, one se
that, at the instability threshold, the amplitude of the osci
tion quickly reaches its saturation value. Beyond that thre
old, the maximum amplitude does not significantly increa
but the large amplitude relaxation oscillations start alm
immediately. The growth rate, as a function of frequency
symmetric with respect to the center frequency. It matc
the resistive part of the resonator impedance. The dam
rate is not nearly as symmetric. It is very small over t
second half of the resonance curve@Fig. 3~c!#. Because of
this asymmetry, the frequency of the relaxation oscillation
a function of the HOM frequency is also asymmetric.

The variation and/or spread of the synchrotron tune d
ing these oscillations was also measured. These data
obtained by frequency demodulating a signal from a pick
in the storage ring. The demodulated signal was then in
into a digital spectrum analyzer. Since the analyzer avera
over many relaxation periods, this measurement could
resolve the difference between a tune variation and a sp
of tune within the bunch over the oscillation. The frequen
deviation showed a decrease of 15% from the nominal s
chrotron frequency, corresponding to the shift for large a
plitude pendulum oscillations@Fig. 3~d!#.

2. Streak camera

All of the spectrum analyzer data only give informatio
about the dipole moment of the beam. The next set of d
was taken with a streak camera, an instrument that g
information about the internal structure of the beam. Pre
ous attempts to explain these oscillations have used m
coupling techniques@12,13#, but the streak camera image
show that this technique is not appropriate for compac
describing this behavior. The great advantage of usin
streak camera was that the data obtained gave us key
with which to build a simple and accurate model.

Synchrotron radiation emitted by the electron beam in
dipole is the incident signal to the streak camera. A pho

FIG. 3. Relaxation oscillation parameters vsf HOM : ~a! relax-
ation oscillation frequency,~b! maximum ~n! and minimum~,!
powers of oscillation,~c! growth times~n! and damping times~,!,
~d! ns , showing;15% deviation over the range off HOM .
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cathode in the camera transforms the time-dependent ra
tion into a beam of electrons, which are then rotated by
angle of 90° inside the camera before striking a photoano
The photoanode re-emits photons that are then imaged on
camera’s charge-coupled-device~CCD! array. This rotation
transforms the longitudinal temporal distribution of th
bunch into a vertical photon distribution~or ‘‘streak’’! which
can be read out of the camera~Fig. 4!. The streak camera
data were taken with the same machine parameters as
spectrum analyzer data. Again, the resonator frequency
the main independent variable. Data were taken both a
slow scan rate, one slow enough to see the entire relaxa
oscillation cycle, and at a fast rate, one short enough to s
single streak every third revolution period.

On the slow scan range, the entire relaxation oscillat
cycle was captured. While growing, the envelope visible
the slow scan shows the bunch to be concentrated nea
extremes of the oscillation. But its charge density decrea
with time @Fig. 5~a!#. The maximum amplitude of oscillation
reached is aboutp/2 radians. In the damping phase, th
macroparticle still exists and damps, but it has a much
duced intensity compared to its initial value. At the end
this phase, particles have accumulated around the cente
the particular case off HOM slightly aboveh f01 f so , when
the damping is very slow, a second accumulation po
clearly forms near the origin@Fig. 5 ~b!#. The charge at this
point grows in both amplitude and intensity as the origin
macroparticle continues its decay.

The slow data confirm the periodic nature of the pheno
enon and allow fast scan data to be taken and correctly
terpreted. These data show the distribution of the bunch
every third turn, so that many distinct images are display

FIG. 4. Schematic diagram of a dual sweep streak cameraA,
photocathode;B, accelerating mesh;C, vertical sweep plates;D,
horizontal sweep plates;E, microchannel plate;F, phosphor
screen;G, CCD camera.

FIG. 5. Relaxation cycles for two different values off HOM : ~a!
f z; f s , ~b! f z. f s , showing the appearance of a second cen
accumulation of particles there, and its growth. Note that~b! has
much slower damping than~a!.
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PRE 60 4827RELAXATION OSCILATIONS OF THE SYNCHROTRON . . .
along each synchrotron oscillation period. By comparing
envelope of these images with that of the slow scan ima
the proper stage in the relaxation cycle can be identifi
These data show that the bunch behaves as a single m
particle during its growth, oscillating between extremes a
slowly losing particles~Fig. 6!. The second accumulatio
point, when seen, is phase-locked to the initial macroparti
but approximatelyp out of phase with it~Fig. 7!. It stays
locked with the macroparticle and grows in amplitude, as
original macroparticle damps. These streak camera ima
clearly show the two dynamic phases of the system. O
center grows exponentially, then saturates@Figs. 5 and 6~b!#.
It continues to lose particles, which accumulate at a sec
center. The second center grows in amplitude as it accu
lates more particles. Meanwhile, the first center damps.
two centers have now exchanged roles in this oscillati
giving the system a bistable character.

IV. SIMULATIONS

A. Simulation program

Since the streak camera images show a loss and an a
metric variation of charge density, a multiparticle simulati
program was written to determine the evolution of the bun
phase space distribution, turn after turn, in the presence
perturbing long term wake field. Individual particles obey
second order difference equation with a driving force prop
tional to the wake termW(t) of Eq. ~6!. The driving force is
the combination of the wake field generated by partic
ahead of it in the same bunch, and of all the wake fie
generated from each particle on all previous turns.

The turn-by-turn difference equation of the code includ
the synchrotron radiation emission through losses, radia

FIG. 6. ~a! Growth of bunch as a macroparticle;~b! saturation of
main body with signs of filamentation visible.

FIG. 7. Two centers during damping forf z. f s , with individual
streaks now visible.~a! The second center has more charge than
original main body, yet its oscillation amplitude is still small.~b!
The second center now has most of the charge. Its amplitude
tinues to grow while that of the original main body continues
damp. Oscillations are aboutp out of phase.
e
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damping, and quantum fluctuations. The long memory of
high Q cavity is retained by the use of propagators. Th
enable the accurate retention of the phase information of
rapidly oscillating wake over the comparatively long tim
scale of one revolution period. To get more than an en
relaxation cycle, 105 turns were commonly computed for
population of 20 000 particles, distributed over 3003300
cells covering the area spanned by the 2p size of the RF
bucket and620 standard deviations of the natural ener
spread. Each run calculating one second of evolution of
distribution of 20 000 particles takes only a few hours on
standard PC. Details on the wake field computation are p
sented in the Appendix.

B. Simulation results

The results of the simulations are in good agreement w
experimental results. They reproduce the very low freque
of the relaxation oscillation~always below 100 Hz in our
case!. They confirm qualitatively the evolution of frequenc
and amplitude as a function of the induced voltage. Th
simulations reproduce thep/2 limit cycle amplitude ob-
served with the streak camera. Finally, the simulations c
roborate the streak camera data, discussed above, that
that the bunch grows as a macroparticle that loses ch
density to an attractor at the center~Fig. 8!.

Based on these results, the predictions of the simulati
could be viewed with confidence. They were used to g
further insight into the details of the oscillation too sensiti
to be seen with our experimental setup. The tracking c
phase space distribution shows that the filamentation s
from the head of the bunch. Particles spiral from the head
the bunch towards the center of phase space@Fig. 8~b!#. One
can observe that these particles perform synchrotron osc
tions at a higher frequency than those still attached to

e

n-

FIG. 8. Distribution in phase space~charge density levels are
plotted in a logarithmic scale!. ~a! Beginning of the relaxation os
cillation cycle; ~b! initial growth: the bunch starts to filament; pa

ticles leave the head of the bunch~gain Dḟ̄.0 with respect to the
main body!; ~c! filamentation: the escaping particles spiral towa
the center~second attractor! while the main body reaches its limi
cycle; ~d! damping: the bunch has lost its initial charge dens
distribution and damps.
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4828 PRE 60C. LIMBORG AND J. SEBEK
main body. These results gave important clues for the th
retical model.

Additional comparisons such as formation of the seco
stable fixed point whenf HOM is slightly abovep f01 f so re-
main to be studied.

V. ANALYTICAL MODEL

A. Introduction

A simple analytical model of this system, explaining t
main features of the experimental data and simulations,
been developed. It takes advantage of the greatly diffe
time scales of the mechanism. The series of discrete, im
sive forces on the system are approximated by a continu
expression, allowing a closed form solution of the equatio
of motion to be developed. Another simplification can
made because of the slowly varying changes of the osc
tion amplitude and frequency with respect to the synchrot
oscillation frequency. The expression of the driving for
presented here reduces to a single infinite sum that rap
converges. The two-particle version of this model reprodu
the main characteristics of the system.

B. Continuous approximation

As given in Sec. II B, the impedance of the cavity res
nance can be modeled as a resonator with a wake func
~potential per unit charge! acting at timet and due to a
source particle present at timet,

W~ t2t!5U~ t2t!2aRRSe2aR(t2t) cos@vR~ t2t!1fR#.
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The total wake can then be represented by an infinite sum
wakes generated during previous traversals of the cavity.
decelerating wake potential seen at timet is then

W~ t !52aRRS (
u52`

t

e2aR(t2u) cos@vR~ t2u!#,

whereaR[ vR/2Q. If the bunch revolution period were con
stant atT0 , t would be replaced bynT0 , u would be re-
placed bykT0 , and the wake potential would be

W~nT0!52aRRS (
k52`

n

e2aR(n2k)T0 cos@vR~n2k!T0#.

Since the revolution period is almost, but not exactly, co
stant, in order to keep the physics of the equation, one ne
to keep a term, small compared toT0 , that represents the
variation of arrival time. Therefore,

t5nT01tn ,

u5kT01tk .

Now

W~ t !52aRRS (
k52`

n

e2aR[(n2k)T01(tn2tk)]

3cos$vR@~n2k!T01~tn2tk!#%.

RepresentingvR5pv01vz as an integral multiple and a
fractional part of the revolution harmonic, the sum becom
ve been

be
W~ t !52aRRS (
k52`

n

e2aR[(n2k)T01(tn2tk)] cos$~pv01vz!@~n2k!T01~tn2tk!#%

52aRRS (
k52`

n

e2aR[(n2k)T01(tn2tk)] cos@p~n2k!v0T01vz~n2k!T01vR~tn2tk!#

'2aRRS (
k52`

n

e2aR(n2k)T0 cos@vz~n2k!T01vR~tn2tk!#,

where in the last line the small difference in the monotonic damping due to the deviations of the revolution period ha
ignored and multiples of 2p have been removed from the argument of the cosine term. Using the representationst5nT0 ,
u5kT0 , tn5t(nT0), tk5t(kT0), and the identity 1[(1/T0) * (k21)T0

kT0 du, the time-dependent part of the wake can

represented by the continuous convolution integral

W~ t !52aRRS (
k52`

n
1

T0
E

(k21)T0

kT0
e2aR(n2k)T0 cos@vz~n2k!T01vR~tn2tk!#du

52aRRS

1

T0
E

2`

t

e2aR(t2u) cos$vz~ t2u!1vR@t~ t !2t~u!#%du.

When the bunch hasN particles of chargee, the electrical potentialV(t) generated by the wake is

V~ t !52aRRS

1

T0
E

2`

t

~Ne!e2aR(t2u) cos$vz~ t2u!1vR@t~ t !2t~u!#%du

52aRRSE
2`

t

Ie2aR(t2u) cos$vz~ t2u!1vR@t~ t !2t~u!#%du,

whereI is the current in the bunch.
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C. Evaluation of the integral

The continuous approximation of the synchrotron mot
is that of common pendulum motion. Even for large amp
tude oscillations observed in these data, the motion is
very close to sinusoidal.t(t) andt(u) can be represented a
slowly varying sinusoidal functions

t t~ t !5 t̂ t cos~vstt1f t!,

tu~ t !5 t̂u cos~vsut1fu!,
d
y

n

-
ill

since t̂ t , t̂u , vst , vsu , f t , andfu are all slowly varying
functions of time with respect to the synchrotron frequen
The integralV(t) can then be explicitly computed. Eve
though the integral starts at2`, the exponential damping o
the HOM means that the only important contributions co
from times no further back than a few resonator damp
times. For this system, this resonator damping time is a
comparable to the synchrotron period so that with the slo
varying approximation,t̂u , vsu , andfu can be considered
as constants in the integration.

The potential term can be expressed as
V~ t !52aRRSI E
2`

t

e2aR(t2u) cos@vz~ t2u!1vR~t t2tu!#du

52aRRSI ReH E
2`

t

e2aR(t2u)ej [vz(t2u)1vR(t t2tu)]duJ
52aRRSI ReH e2ar t1 j [vzt1 t̂vR cos(vstt1f t)]E

2`

t

earu2 j vzue2 j t̂uvR cos(vsuu1fu)duJ .

Using the expansion

ej t̂vR cos(vsu1C)5 (
m52`

`

j mJm~ t̂vR!ejm(vsu1C)

and the notationr t5 t̂ tvR and r u5 t̂uvR , this integral can be expressed as the doubly infinite sum

V~ t !52aRRSI ReH (
p,m52`

`
j p2mJp~r t!Jm~r u!ej (pvst1mvsu)tejpf t1 jmfu

a r1 j ~mvsu2vz!
J . ~8!
of

ce
ed

the
D. KBM method

The averaging method of Krylov, Bogoliubov, an
Mitropolsky @14–16# is well suited to such an oscillator
problem with slowly varying parameters@17#. To solve a
driven harmonic oscillator

ẍ1vs0

2 x5 f x~x,ẋ!,

new variables (r ,f) are defined in terms of (x,ẋ) by the
equations

x5r ~ t !cos@vs0
t1f~ t !#,

ẋ52vs0
r ~ t !sin@vs0

t1f~ t !#.

By equating

ẋ5
dx

dt
,

ẍ5
dẋ

dt
,

one obtains the differential equations for the amplitude a
phase of the oscillation,
d

ṙ 52
1

vs0

sin~vs0
t1f! f ~r ,f!,

ḟ52
1

vs0
r

cos~vs0
t1f! f ~r ,f!,

where f (r ,f) is the driving force expressed in terms
(r ,f). The Krylov-Bogoliubov-Mitropolsky ~KBM ! ap-
proximation involves taking the average value of the for
over the period of oscillation. Denoting the time-averag
values of r and f by r̄ and f̄, respectively, the desired
equations of motion are

r̄̇ 52
1

2p E
t2 ~2p/vs0

!

t

sin~vs0
t1f! f ~r ,f!dt, ~9!

ḟ̄52
1

2pr Et2 ~2p/vs0
!

t

cos~vs0
t1f! f ~r ,f!dt. ~10!

If f (r ,f) is expanded in a Fourier series with respect to
oscillation frequencyvs0

,
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f ~r ,f!5F0~r ,f!1 (
n51

`

@FCn~r ,f!cos~nvs0
t1f!

1FSn~r ,f!sin~nvs0
t1f!#, ~11!

then the averaged evolution equations of the oscillation
plitude and phase become

r̄̇ 52
1

2vs0

FS1~ r̄ ,f̄ !,
a

ne

b

ed
m
f

e
si
at
e
p

io

icl
-

ḟ̄52
1

2vs0
r̄

FC1~ r̄ ,f̄ !.

E. Application of the KBM method

The evolution of the amplitude and frequency of the sy
chrotron oscillation due to the wake field force can now
extracted from Eq.~8!. Contributions toFS1 and FC1 will
only occur whenp52m61. After some algebra, one ob
tains the Fourier coefficients of sin(vstt1ft) and cos(vstt
1ft), respectively, as
FS152
vs0

2

VRFucoswsu
2aRRSI (

m51

`

Jm~r u!@Jm21~r t!1Jm11~r t!#H F aR

aR
21~mvsu2vz!

2 2
aR

aR
21~mvsu1vz!

2Gcos~mDf!

2F ~mvsu2vz!

aR
21~mvsu2vz!

2 2
~mvsu1vz!

aR
21~mvsu1vz!

2Gsin~mDf!J , ~12!

FC15
vs0

2

VRFucoswsu
2aRRSI H 2

vz

aR
21vz

2 J0~r u!J1~r t!1 (
m51

`

Jm~r u!@Jm21~r t!2Jm11~r t!#

3F S ~mvsu2vz!

aR
21~mvsu2vz!

2 2
~mvsu1vz!

aR
21~mvsu1vz!

2D cos~mDf!

1S aR

aR
21~mvsu2vz!

2 2
aR

aR
21~mvsu1vz!

2D sin~mDf!G J , ~13!
e
in a

cle
f

he

n-
s by
on
m

el

hat
co-
-
or-

of
where Df5f t2fu . These terms describe the force on
test particlet due to a macroparticleu carrying currentI .
This paper concentrates on a two-particle model. To ge
alize to a distribution, the total force on a particle at (r t ,f t)
is calculated from the integral of the forces generated
particles distributed in (r u ,fu) and weighted by their
charge.

The wake field is not the only effect that must be includ
to describe the behavior of this system. The radiation da
ing can be considered constant over the energy range o

terest. The radiation damping term contributes only to thr̄̇
equation. The pendulum frequency decreases with increa
amplitude. To first order, this decrease can be approxim
by a term quadratic inr @16#. Since these terms all satisfy th
slowly varying approximations, the KBM method can be a
plied by treating the three terms as independent contribut
to the equations of motion ofr̄ and f̄.

The final, averaged equations of motion for a test part
at (r t ,f t) due to a macroparticle at (r u ,fu) are

r̄̇ t52
1

2vst
FS1~ r̄ t ,f̄ t , r̄ u ,f̄u!2a rad.r̄ t , ~14!

ḟ̄ t52
1

2vstr̄ t
FC1~ r̄ t ,f̄ t , r̄ u ,f̄u!2

1

16
r̄ t

2vst . ~15!
r-

y

p-
in-

ng
ed

-
ns

e

VI. ANALYSIS OF RELAXATION OSCILLATIONS

A. Description of equations of motion

Equations~14! and ~15! contain the key features of th
dynamics of the system. These equations are expressed
rotating coordinate system in which the source parti
moves radially along thef50 axis. The angular position o
the test particle is given by its deviation in phase,Df, from
the source. For small and slowly varying differences in t
frequencies of the two particles,Df'(vst2vsu)t. One
term that affects the frequency of the test particle in Eq.~13!
is independent off. All other terms have a harmonic depe
dence on it and average to zero as the test particle rotate
2p. In particular, the growth generated by the wake field
a test particle with a synchrotron frequency different fro
that of the source is nearly zero.

For amplitudes ofr within the RF bucket size, the Bess
coefficients make the infinite series in Eqs.~12! and ~13!
converge rapidly. When the impedance is such t
vz5vsu , the dominant terms in those equations are the
efficients of cos(mDf) and sin(mDf), respectively. Conse
quently, these terms have a similar distribution in this co
dinate system, but one is rotated byp/2 with respect to the
other. In this case, the line of maximal growth and the line
zero frequency shift both lie nearDf50.

For the case of a single macroparticle model,r t5r u and
Df50. Each term of Eqs.~12! and ~13! are antisymmetric
under the interchange of (mvsu2vz) with (mvsu1vz).
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This shows that tuning the resonance from an upper (vz5
1vs) to a lower (vz52vs) synchrotron sideband change
a growth rate to a damping rate of the same magnitude. T
general result confirms the well known property first r
ported by Robinson@10#. In most cases, them50 and m
51 terms of the series give a good approximation to the t
sum:

FS1'52
vs0

2

VRFucoswsu
2aRRSIJ1~r u!@Jo~r t!1J2~r t!#

3F aR

aR
21~vsu2vz!

2 2
aR

aR
21~vsu1vz!

2G ,
FC1'5

vs0

2

VRFucoswsu
2aRRSI H 2

vz

aR
21vz

2 J0~r u!J1~r t!

1J1~r u!@Jo~r t!2J2~r t!#F ~vsu2vz!

aR
21~vsu2vz!

2

2
~vsu1vz!

aR
21~vsu1vz!

2G J .

B. Linear regime

Using the narrow-band resonator impedance approxi
tion

Z~vR1Dv!5aRRS

aR1 j Dv

aR
21Dv2

and the small amplitude expansion of the Bessel functio
one recovers the formulas for growth and frequency sh
given in @18,7#:

r̄̇ 5
vs0

2VRFucoswsu
I Re$Z~hv01vs0

!

2Z~hv02vs0
!% r̄ 2a radr̄ ,

ḟ̄5
vs0

2VRFucoswsu
I Im$2Z~hv0!2Z~hv01vs0

!

2Z~hv02vs0
!%.

When Re$Z(hv01vs0
)2Z(hv02vs0

)% is sufficiently large, the
bunch amplitude grows toward an attractor at infinity.

C. Growth as a macroparticle

A bunch has Gaussian distributions along the two dim
sions of the phase space. Its thermal distribution is the re
of an equilibrium between quantum excitation and radiat
damping. But despite its finite dimensions, the bunch can
treated as a macroparticle, since it keeps its cohesion du
the first stage of its growth. This property can be dedu
from the representations of Eqs.~12! and ~13! in Fig. 9.
These equations give the expression of the driving force
ing on a test particle located at (r t ,Df) and produced by the
is
-

al

a-

s,
s

-
ult
n
e

ng
d

t-

main body, or source, located at (r u ,Df50). For conve-
nience in expansions around the main body,Dr is defined as
Dr 5r t2r u .

In Fig. 9~b!, the representation of the frequency shift i
duced by the macroparticle wake shows that~1! particles
delayed with respect to the main body (Df,0) will expe-

rience a greaterḟ̄ than the main body and will therefor
catch up to it, and~2! particles ahead of the main body wi

be decelerated (Dḟ̄,0) and will fall back to it. The wake
field induced frequency shift provides an azimuthal attract
force.

In Fig. 9~a!, the representation of the growth rate induc
by the macroparticle wake shows that~1! particles withDr
,0 andDf50 will see more growth than the main bod
and will be drawn out to it, and~2! particles withDr .0 and
Df50 will see less growth than the main body and will b
drawn back to it.

In conclusion, the main body is an attractor for all th
particles of the bunch.

D. Filamentation

Until now, the pendulum frequency shift was negligib
compared to the shift induced by the wake field. In the e
periment performed on SPEAR, with the parameters

FIG. 9. Amplitude ofr̄̇ andḟ̄ in rotating phase space. The ma
body, or center of mass~CM! at (r u5p/4, fu50) contains all of

the charge; the test particle at (r̄ t ,f̄ t) has negligible charge;vz

5vso . ~a! Wake field component in quadrature with oscillation a

proportional to theFS1( r̄ t ,f̄ t) function; particles in the~1! region
are strongly driven by the force generated by the CM; particles
the~2! region are damped.~b! Wake field component in phase wit

the synchrotron motion of the CM and proportional toFC1( r̄ t ,f̄ t);
particles in the~1! region undergo an increase in synchrotron fr

quency,vst , (Dḟ̄.0); particles in the~2! region undergo a de-

crease (Dḟ̄,0). ~c! Same as~a!, but includes the radiation damp
ing term (2a rad.r̄ t); the region of damping now extends over
wider zone.~d! Same as~b! but includes the pendulum frequenc
shift; the pendulum frequency shift~which reducesvst with in-
creasing radial amplitude! dominates at large amplitudes (r̄ u.0.2
radians!.
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scribed in Table I, the position of the bunch at which t
pendulum frequency shift starts to dominate that induced
the wake is att50.2 radians, for particles atDf50. At
these amplitudes, the quadratic radial dependency of the
dulum frequency shift causes an asymmetry inDr that al-
lows the test particle to escape from the front of the bun

~1! Particles with (Dr 50, Df.0) and (Dr 50, Df
,0) will undergo the same growth as the main body, a
will tend to get pulled back towards it as during the ea
stage of growth. As before, the wake field induced freque
shift provides an azimuthal attracting force.

~2! A particle with (Dr .0, Df50) will experience a
larger pendulum frequency shift than the main body and
quire a Df,0. This shift in angle leads it to a region o
smaller radial growth, decreasingDr , and therefore of in-
creasing synchrotron frequency. This sequence of events
lead it back to the main body.

~3! A particle with (Dr ,0, Df50) will experience a
smaller frequency shift, due to the pendulum effect, than
induced by the wake field from the main body. Since t
pendulum term now dominates over the wake field term,
test particle acquires aDf.0. Because the main bunch
near the angle of maximum growth, the test particle at po
tive Df also sees a driving force smaller than that seen
the main body and so moves even further away from it ra
ally, intensifying the pendulum effect. The particle w
therefore escape from the front of the main body.

The escape of particles from the head of the bunch
compression of particles at the tail of the bunch is exac
what is observed with the tracking code. The loss of den
of the main body is also in good agreement with what is s
on the streak camera images.

The amplitude of the limit cycle~maximum amplitude of
the main body! is found to be nearp/2 on the streak camer
images. This value corresponds to the value ofr̂ t at which
the driving forceFS1 is cancelled by the damping term i
Eq. ~14!. If all of the charge were in the main body, ou
machine parameters would predict a larger limiting value
r̂ t . Since the 2 mA bunch loses substantial current dur
its growth, the driving force is correspondingly reduc
~Fig. 10!.

The linear growth and the nonlinear effect leading to sa
ration have now been described. The relaxation of the os
lation comes from the reduction of growth due to the leaka
of particles away from the main body and the formation o
new attractor close to the center of phase space.

E. Damping of system

During filamentation, an escaping particle spirals towa
the center, with a resultant increase in its synchrotron
quency. As derived using the KBM method, the net force
any particle is the average over one of its synchrotron p
ods, 2p/vst . During each integration time, the escaping p
ticle precesses inDf, and the forces acting on it vary i
amplitude. When the particle isp out of phase with the main
body, for example, it is strongly damped by the wake fie
As it spirals toward the center, it alternately experienc
positive and negative forces from the main body wake fie
Over a rotation ofDf52p, the net growth due to this wak
y
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field nearly vanishes, so the particle damps in a time lon
than the radiation damping time, 10 ms in our experime
The escaping test particle also generates a wake field. O
ously, this wake field provides a growth term to the net for
this particle experiences. Other escaping particles will
hance this growth term when they are in phase with the
particle. Consequently, the larger the charge of the esca
particle, the slower its overall damping.

From Eqs.~13! and ~15!,

lim
r t→0

ḟ̄ t} lim
r t→0

FC1

r̄ t
}J1~ r̄ u!

1

r̄ t
cos~Df1f* !,

wheref* is a constant. Since there always exists a coo

nate pair (r̄ t ,Df) that can provide any desiredḟ̄ t , there
always exist points which are in phase with the main bo
On the locus of such points is a fixed point at which t
radial growth vanishes. If our system were static, this fix
point would be an attractor. Since our system is dynamic,
attractor location moves. It moves very slowly, so itsr̄̇ is
small. Therefore, the attractor lies close to the fixed po
defined above. This new attractor is initially located ve
near the origin, where the wake-field-induced frequency s
varies rapidly.

The escaping test particle needs to reach the line wh
the main body exerts no radial force, which is aboutp/2
away from the line of maximal growth. Forvz5vso , this
line is close tof50, i.e., close to the main body. As thi
attractor accumulates more charge, its self-generated w
increases in strength. To compensate for this, the attra
must see more damping from the main body and must m
further away azimuthally, i.e.,Df needs to increase. As i
captures more particles, this attractor moves further aw
from the center. It becomes the new main body in the n
relaxation cycle.

FIG. 10. Growth rate of center of mass~i.e., main body!, which
carries all of the charge, as a function of its radial position in
bucket. The distance at which the force acting on a 2 mA bunch
would be cancelled by damping would be at 2.4 radians. Howe
the bunch loses its charge density during the growth as filame
tion develops. A current of 0.7 mA remaining in the main body
exactly compensated by the incoherent damping when the m
body reaches its limit cycle.
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F. Visualization of second attractor

A particularly interesting case appears when the low
edge of the resonance coincides with the synchrotron s
band (vz.vso). In this case, the second attractor form
away from the center nearlyp out of phase with the main
initial body and the damping time of the system is mu
longer than whenvz5vso .

Defining f1
6 such that

sinf1
65

~vsu6vz!

AaR
21~vsu6vz!

2
,

~16!
cosf1

65
aR

AaR
21~vsu6vz!

2
,

and, keeping only the leading terms, Eqs.~12! and ~13! can
be written as

FS1'52
vs0

2

VRFucoswsu
2aRRSIJ1~r u!@J0~r t!1J2~r t!#

3F cos~f1
21Df!

AaR
21~vsu2vz!

2
2

cos~f1
11Df!

AaR
21~vsu1vz!

2G , ~17!

FC1'5
vs0

2

VRFucoswsu
2aRRSI H 2

vz

aR
21vz

2 J0~r u!J1~r t!

1J1~r u!@J0~r t!2J2~r t!#F sin~f1
21Df!

AaR
21~vsu2vz!

2

2
sin~f1

11Df!

AaR
21~vsu1vz!

2G J . ~18!

In our case of interest, i.e., whenvz is larger thanvso ,
the dominant terms of Eqs.~17! and ~18! are

FIG. 11. Amplitude ofr̄̇ and ḟ̄ in rotating phase space. Sam
conditions as in Fig. 9, but withvz.vso (vz51.4vso). ~a! The
quadrature component of the wake field;~b! The in-phase compo
nent of the wake field. The amplitudes of these terms are ne
identical to those of Fig. 9, but rotated by2f1

2 ; in particular, the
rotation of ~a! justifies why the damping process takes longer th
in the case ofvz5vso .
r
e-

FS1'52
vs0

2

VRFucoswsu
2aRRSIJ1~r u!@J0~r t!1J2~r t!#

3
cos~f1

21Df!

AaR
21~vsu2vz!

2
,

FC1'5
vs0

2

VRFucoswsu
2aRRSI H 2

vz

aR
21vz

2 J0~r u!J1~r t!

1J1~r u!@J0~r t!2J2~r t!#
sin~f1

21Df!

AaR
21~vsu2vz!

2J .

The distributions of damping and growth from theFS1'

function and of frequency shift from theFC1' function are,
to first order, the same as those of the case wherevz

5vso , but rotated by2f1
2 ~Fig. 11!. ~Note that from its

definition in Eq.~16!, f1
2 is negative whenvz.vso .)

For vz5vso , the line of maximum growth is defined b
Df50. On this line, the wake-induced frequency shift
close to zero. Forvz.vso , this line of maximum growth is
now located atDf52f1

2 .
The behavior of a test particle near the main body is n

qualitatively examined as in Sec. VI D.
~1! A test particle attempting to leave the rear of t

bunch has smaller growth, soDr , its radial position with
respect to that of the main body, decreases. Both the w
field and pendulum frequency shifts move it back towa
the main body, as before forvz5vso . This recapture is
similar to the cases described in Sec. VI D forDr 50 and
Dr .0.

~2! A test particle at (Dr ,0, Df50) now has a more
difficult time leaving the head of the bunch for two reason

~i! as the particle acquires some1Df, it moves closer to
the line of maximal growth, located at2f1

2 , where the

ly

n FIG. 12. Phase space contour lines ofr̄̇ t50 ~contour levels of

220, 0, 20 displayed! andḟ̄ t2 ḟ̄u5050 ~contour levels of2200,

0, 200 displayed!. The CM at (r̄ u5p/8, f̄u50) carries 60% of the

2 mA current; the test particle at (r̄ t ,f̄ t) carries the rest;vz

51.4vso . The second attractor is near the intersection of the z
level lines; particles at that location do not grow or damp and
locked in phase with the main body with aDf close top.
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4834 PRE 60C. LIMBORG AND J. SEBEK
wake field pushes it out radially and the pendulum slow
down; ~ii ! the test particle will need to precessDf52uf1

2u
before its radial growth is less than that of the main bod

Accordingly, it will take much longer for the particles t
escape from the bunch. Longer damping times of the re
ation oscillation forvz.vso have been observed experime
tally ~Fig. 3!.

As discussed in Sec. VI E, a second attractor, which
locked in phase with the main body, forms nearlyp/2 away
from the line of maximal growth. Since this line is alread
located at2f1

2 , the additionalp/2 places the second attra
tor close top out of phase with the main body~Fig. 12!.

This two-particle model has described the complica
behavior observed on the streak camera in Fig. 7 and
scribed in Sec. III C 2. The model explains the growth a
macroparticle, the filamentation and loss of charge den
during this growth, the formation of a second attractor n
the origin, the flow of particles from the first attractor to th
second, and the eventual growth of this second attra
while the first is still visible. The second attractor is mo
clearly visible in the case ofvz.vso , when the two attrac-
tors are phase locked nearlyp apart.

VII. GENERALIZATION TO ANY HOM

This analysis also extends to true HOMs. The amplitu
of saturation is still determined by the decrease of the driv
term and the loss of charge density in the main body as
radial amplitude increases, as presented in Fig. 13. The
guments of the Bessel functions are now changed tor t
5 t̂ tvHOM and r u5 t̂uvHOM . Since the angular HOM fre
quencyvHOM is greater thanvRF , the saturation occurs fo
smaller radial amplitude. Since the pendulum equation
comes from the accelerating voltage, oscillating at freque
vRF , the pendulum frequency shift at saturatio
1

16 ( t̂ tvRF)2vso , is much smaller than that observed for t
case of the fundamental.

The analytical approach is also valid for multibun
cases. For example, forN equally distributed bunches, in
stead of decomposingvRF in pvo1vz , vRF must now be
expressed asnNvo1(mvo1vz), 0<m,N, giving the ex-
pectedN modes of the system. The derivation is straightf
ward and is omitted here.

Experimental data was obtained on SPEAR with se

FIG. 13. Relaxation oscillation for h5751 (f HOM

5961.6 MHz) HOM.
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bunches in the presence of a strong HOM at 961 MHz.
shown in Figs. 1 and 13, the relaxation oscillation frequen
is also smaller than 100 Hz. These data verify that this an
sis holds for general HOMs. As seen in Fig. 13, the satu
tion amplitude scales with the ratio ofvRF /vHOM .

VIII. CONCLUSION

In this paper we have analyzed the characteristics of
longitudinal relaxation oscillations, long observed in ma
machines, generated in the presence of narrow-band im
ances. Extensive experimental measurements were
formed at SPEAR. An enhanced simulation code provid
helpful insights into the mechanism involved. An analytic
method was presented that derives a simple model that
plains the important features of the oscillation.

Although this model has been very successful in desc
ing the essential characteristics of this relaxation oscillati
it is hoped that further refinements bring even better agr
ment with experimental data. The model likely needs to
extended beyond a two-particle system, possibly to a c
tinuous distribution. This extension should better explain
radial amplitude of the second attractor in the case of la
amplitudes of the main body. Work on the tracking co
continues in parallel.
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APPENDIX: NUMERICAL COMPUTATION
OF WAKE IN SIMULATION PROGRAM

In the multiparticle tracking code, the wake field must
computed on short time scales, i.e., many time divisions
rms bunch length, and must be carried over long time sc
to the next bunch.

The longitudinal wake for a resonator of resistanceRs ,
frequencyv̄, of damping rateaR and quality factorQ is

W~ t2t!5U~ t2t!2aRRse
2aR(t2t)H cos@v̄~ t2t!#

2
aR

v̄
sin@v̄~ t2t!#J

with

aR5
vR

2Q
and v̄5AvR

22aR
2,

whereU(t) is the Heaviside function:
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U~ t !5H 1 t.0

1/2 t50

0 t.0

.

In the simulation, for the purpose of the calculation of t
wake, particles are grouped into discrete bins of widthDt.
The wake is then represented as a set of discrete steps
step per bin. The wake in a given bint1Dt is the sum of the
wake from the previous bint transported over one bin an
the contribution from the particles in the current bin. Fro
the fundamental theorem of beam loading, a particle s
only one half of its instantaneous wake, whereas all sub
quent particles see all of this wake. Since the fields obey
second order wave equations, the propagator can be
scribed by
. E

a

-

e

h

n

-
s

one

es
e-
e
e-

S W~ t1Dt !
W8~ t1Dt ! D5e2aDtS cos~vR8Dt !

1

vR8
sin~vR8Dt !

2vR8 sin~vR8Dt ! cos~vR8Dt !
D

3S W~ t !1aRsn~ t !
W8~ t !22a2Rsn~ t ! D

1S aRsn~ t1Dt !
22a2Rsn~ t1Dt ! D .

Since the bin spacing is fixed, this bin-to-bin propagator i
constant matrix that can be calculated once, and then be
repeatedly. The derivative of the wake must also be co
puted and carried along.
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